Improving the network stack: progress on

QUIC and SMB3.1.1 for Linux

Presented by Steve French
Principal Software Engineer
Microsoft Azure Storage

WY ol QA o 137 V4

* This work represents the views of the author(s) and does not
necessarily reflect the views of Microsoft Corporation

* Linux is a registered trademark of Linus Torvalds.

= Other company, product, and service names may be trademarks or
service marks of others.

Who am [|?

= Steve French smfrench@gmail.com

= Author and maintainer of Linux cifs vfs (for accessing Samba, Azure,
Windows and various SMB3/CIFS based NAS appliances)

= Co-maintainer of the kernel server (ksmbd)
= Member of the Samba team (co-creator of the “net” utility)

= coauthor of SNIA CIFS Technical Reference, former SNIA CIFS
Working Group chair

* Principal Software Engineer, Azure Storage: Microsoft

SN ol

Outline

= Overview of QUIC

* Review of Xin Long’s status update on QUIC in Linux kernel
* Discussion of cifs.ko changes needed

= Coming soon ... what to look forward to
= Testing discussion

Why i1s QUIC important?

We could ask ChatGPT ...

@ ChatGPT

QUIC (Quick UDP Internet Connections) offers several advantages over TCP as the transport

protocol for SMB3.1.1 (Server Message Block version 3.11), particularly in terms of performance,

security, and reliability.

1. Reduced Latency: QUIC is designed to minimize latency by reducing the number of round
trips required for establishing a connection. It achieves this by combining the initial handshake
and encryption setup into a single round trip, resulting in faster connection establishment
compared to TCF.

. Multiplexing: QUIC supports multiplexing of multiple streams within a single connection. This
enables concurrent transmission of multiple data streams over a single connection, reducing
the overall latency and improving throughput, especially in scenarios where multiple files are
being transferred simultaneously in SME.

. Connection Migration: QUIC allows for seamless connection migration between different
network interfaces or IP addresses without disrupting ongoing data transmission. This is
particularly advantageous for mobile devices or scenarios where network conditions change

frequently, ensuring continuous connectivity and minimizing downtime.

Why QUIC (continued) ...

. Improved Security: QUIC incorporates modern encryption protocols such as TLS 1.3 by

default, providing robust encryption for data transmission and enhancing security compared
to older versions of TLS used with TCP. Additionally, QUIC mitigates certain vulnerabilities
associated with TCF, such as 5YT flooding attacks, by utilizing UDP encapsulation.

. Adaptive Congestion Control: QUIC includes built-in mechanisms for adaptive congestion
control, which dynamically adjusts transmission parameters based on network conditions
such as packet loss and latency. This helps optimize network utilization and ensures efficient
use of available bandwidth, leading to improved performance and reliability.

. Faster Handshake: QUIC's connection establishment process is optimized for efficiency,
requiring fewer round trips compared to TCP's three-way handshake. This results in quicker
initiation of data transfer sessions, reducing overall latency and improving user experience,

especially for short-lived connections such as those typical in SMB file transfers.

By leveraging these advantages, using QUIC as the transport protocol for SMB311 can

significantly enhance the performance, security, and reliability of file transfer operations,

particularly in modern network environments where low latency, multiplexing, and adaptive

congestion control are crucial requirements.

But It misses some of the obvious ...

It solves the “port 445" problem (e.g. it can be hard form me to demo
SMB3.1.1 when Spectrum blocks port 445). SMB3.1.1 mounts to anywhere ...

save your files more easily into the cloud ...

It also could allow a mix of machine credentials (for QUIC encryption) and
user credentials ... which may be helpful for some workloads

If QUIC is also supported in unencrypted mode (as some QUIC drivers allow
for testing) it will likely be faster than TCP (if encrypting it is still a good
alternative to requiring SMB3.1.1 GCM encryption)

Will there be cases where “double encrypting” (at QUIC layer and also for
SMB3.1.1 layer) will be valuable?

But 1t still would be awesome due to ...

No “head of line blocking”

Better congestion control

—aster session establishment

Reduced retransmissions (and Forward Error Correction)

_arge percentage of internet traffic is already over QUIC
(and growing)

So why don’t we have QUIC yet on Linux?

* Well ... we do in userspace, multiple drivers

— e.g. https://github.com/microsoft/msquic is well tested and works on
Linux

* But unlike Windows, we don’t have a kernel driver

* And many of the open source QUIC drivers wouldn’t port well

to Linux kernel (even if only porting minimal required function)
and don’t follow kernel coding style

* Last year (June 24™M) — Xin Long started a kernel project which
IS looking VERY promising

https://github.com/microsoft/msquic

Is this just for Windows?

* Ned’s slides and learn.microsoft.com explain more about

Windows SMB3.1.1 over QUIC, but Visuality systems also
supports SMB3.1.1 over QUIC

* QUIC will be a great addition to cifs.ko, ksmbd.ko and
Samba server and tools

Windows QUIC SMB3.1.1 config

& | B File shares (SMB server) % | &= s~

<« = @] 1 & | httpsy/localhost:6516/servermanager/connections, .corp.contoso.com/tools/settings/smbServer

Windows Admin Center | Server Manager v = Microsoft

ws2022-quic.corp.contoso.com

@ An update is available for this extension. Update now

File shares (SMB server)
These settings affect all file shares on this server that use the SMB protocol, overruling settings on individual shares.

> Settings

General

File shares (SMB server) General settings

Environment variables @ SMB 1isn't installed
Azure Arc for servers

SMB 1 removal (D)
Power configuration @ Don't audit SMB 1 connections

Audit SMB 1 i
Remote Desktop O udi connections

Role-based Access Control SMB signing (@
@ Not required

O Required

SME 3 encryption (@
@ Not required

O Required from clients that support it

O Required from all clients (others are rejected)

File sharing across the internet with SMB over QUIC
Enable shares on this file server to be accessible across the internet — without using a VPN — by configuring the QUIC protocol. Learn more =%

SMB over QUIC is not configured

j Configure

“ Discard changes

Example Windows mount from Ned’s post

EN Administrator: Windows PowerShell — O

PS C:\> net use * \\WIN-ORCV2RIGP4C.corp.contoso.com\c$ /p:n /transport:QUIC
System error 67 has occurred.

The network name cannot be found.

PS C:%>» New-SmbServerCertificateMapping -Name WIN-ORCV2RIBPAC.corp.contoso.com -Thumbprint de873@b472adc3cd2d@32387b8fdf
£84891e89cd -StoreName My

MName Subject Thumbprint DisplayName StoreName Ty
pe

PS C:\> net use * \\WIN-ORCV2RI@P4C.corp.contoso.com\c$ /p:n /transport:QUIC
Drive Z: is now connected to “\\WIN-ORCVZRIGPAC.corp.contoso.com\c$.

The command completed successfully.

PS5 C:\>

Diagram showing SMB3.1.1 over QUIC
(for Windows)

* (Thanks to Obaid)
SMB/QUIC: Client

SMB Client 1. Client opens \\ServerName\Share\foo.tst

SMBD

NDEK/RDMA

Multichannel / Signing / Encryption / Compression

2. Client resolves ServerName using DNS

3. Client attempts TCP and QUIC simultaneously*

4. Client will start using whichever connects first

5. Client’s multichannel will negotiate interfaces with server
and will select most optimal protocols

6. Client sends SMB messages

The New Kernel QUIC driver

G &) https://github.com/lxin/quic o] =

|Xin/quic Public L) Notifications Y

> Code () Issues I Pullrequests () Actions [Projects [0 wiki @ Security [~ Insights

+ main ~ # 1Branch © 0 Tags Q. Gotofile About

In-kernel QUIC implement;

Ixin unit_test: update the pnmap and crypto unit test cases @@ 340270 - last week (&) 264 Commits Userspace handshake

M handshake handshake: update CONNECTION_MIGRATION sockopt desc... last month linux socket posix

quic in-kernel
include/uapi/linux uapi: include stdint.h for userspace use last month

Readme
net/quic unit_test: update the pnmap and crypto unit test cases last week
GPL-2.0 license

tests tests: use msg_len 1024 for packet loss test last week Activity

COPYING COPYING: add license text for this repo 3 months ago 95 stars
6 watching
Makefile.am Makefile: fix a typo error in Makefile.am 2 months ago 3 forks

README.md README: show performance test results with common MTUs last week Report repository

autogen.sh Makefile: use autotools instead of manual Makefile 3 months ago
Releases

|
[|
[]
0
0
O
0
0

configure.ac Makefile: use autotools instead of manual Makefile 3 months ago)
No releases published

B

README 2[3 GPL-2.0 license : Packages

No packages published

QUIC in Linux Kernel

Contributors 3

Ixin Xin Long

Overview
tylerfanelli Tyler Fanelli

As mentioned in https://github.com/Ixin/tls_hs#the-backgrounds: "some people may argue that TLS handshake
. . " T : pengtache Pengtao He

New Kernel QUIC driver

 What | am impressed with so far:
Kernel style and code looks good
Very easy to build the kernel driver and run their functional tests
Reasonable size (20.4KLOC about %2 of which is kernel code)

Good set of functional tests included (it passed all of them when
| tried)

Maintainers have been responsive to emails and questions

New Kernel QUIC driver

* Easy to build and install (see quic/README.md)

root@mfrench-ThinkPad-P52:/home/smfrench/smb3-kernel# lsmod | grep quic
192512 ©

ip6 udp tunnel 16384 1

udp tunnel 32768 1

root@smfrench-ThinkPad-P52:/home/smfrench/smb3-kernel# modinfo quic

filename: /1lib/modules/6.9.0-060900rcd4-generic/extra/quic.ko

license: GPL

description: Support for the QUIC protocol (RFC9000)

author: Xin Long <lucien.xin@gmail.com>

alias: net-pf-10-proto-261

alias: net-pf-2-proto-261

srcversion: DF18010B3F937CB40FA73D2

depends: udp tunnel,ip6 udp tunnel

retpoline: Y

name: quic

vermagic: 6.9.0-060900rc4-generic SMP preempt mod unload modversions

Overview of the proposed kernel QUIC
driver

Next 15 slides courtesy of Xin Long <lucien.xin@gmail.com>
See https://github.com/Ixin/quic
Thanks to Xin and also for contributors to the code e.q.
Pengtao He <hepengtao@xiomi.com> and
Tyler Fanelli <tfanelli@redhat.com>

mailto:lucien.xin@gmail.com
https://github.com/lxin/quic
mailto:hepengtao@xiomi.com
mailto:tfanelli@redhat.com

What we’ll > Background

diSCUSS tOday » Implementation

» Usage

» Next Step

Background

» What is QUIC
» Why QUIC in Kernel is Needed

» In Kernel QUIC Evolution

What is QUIC

RFC9000 - A UDP-Based Multiplexed and Secure Transport

o UDP based
Connection Migration

> Multistreaming

> Secured by TLS 1.3
Rekeying/Session Resumption/0-RTT
> Transport Protocol

Flow Control/Congestion Control

Other RFCs:

v

RFC8999 - Version Negotiation
RFC9001 - Using TLS to Secure
RFC9002- Congestion Control
RFC9221 - Unreliable Datagram
RFC9287 - Greasing the QUIC Bit
RFC9368 - Version Negotiation 2

RFC9369 - QUIC Version 2

Why QUIC in Kernel is Needed

v

Kernel Consumers

SMB, NFS ...

> Socket APIs

listen/accept/connect/send/recv/close/get/setsockopt ...

v

Avoiding Data Copies

zero-copy via sendfile()

v

Offloading in NICs

Similar to TLS/IPsec offloading

v

Less Interoperability Issues

Too many Userland QUIC implementations

In Kernel QUIC Evolution

In-Kernel QUIC !'= Crypto Offloading for Userland QUIC

> net: support QUIC crypto (a patchset posted on 2022)

> Offloading Encryption to QUIC Enabled NICs (LPC2023)
> TLS 1.3 Handshake in kernel/lib

» TLS Handshake netlink in kernel/net (upstream kernel)

> Long/Handshake Packets processed by libngtcp2

Implementation

» |dea
» Handshake Architecture
» User Data Architecture

» Socket Process

ldea

In-kernel QUIC with Userspace Handshake

> Userspace: Only raw TLS Handshake Messages creating and processing

> Kernel: Create IPPROTO_QUIC type socket running over UDP tunnels

> No protocol number needed from IANA, like IPPROTO_MPTCP
> Reasons why ULP layer is not used:

Connection Migration

Common Socket APIs

Transport Protocol

> Kernel consumers use handshake netlink to request a handshake

Handshake Architecture

Userspace

Kernel

ktls-utils: libquic:
quic_handshake_server/client/param()

t/get kopt
send/recvmsg() set/getsockopt()

SOCKOPT CRYPTO_SECRET/
TRANSPORT PARAM_EXT

CMSG handshake_info

socket (IPPROTO QUIC) | Protocol

stream |connection id |cong |path |timer

packet | frame | crypto | pnamp

input | output

UDP tunnels

ktls-utils: tlshd

Handshake
Netlink APIs

10

User Data Architecture

Userspace

Kernel

set/getsockopt()
send/recvmsg()

CMSG stream_info

SOCKOPT_KEY_UPDATE/
CONNECTION_MIGRATION/
STREAM_OPEN/RESET/STOP ...

socket (IPPROTO QUIC) | Protocol

stream |connection id |cong |path |timer

packet | frame | crypto | pnamp

input | output

UDP tunnels

send/recvmsg()
set/getsockopt()

Socket Process

Client:

SK
Hashtable

Conn ID
Hashtable

11

Server:

listen sk

\

SK
Hashtable

A

A

\

Conn ID
Hashtable

v

12

Usage

» From Userspace
» From Kernel

» Advanced APIs

13

From Userspace

> Client > Server
sockfd = socket(IPPROTO_QUIC) listenfd = socket(IPPROTO_QUIC)
bind(sockfd) bind(listenfd)

listen(listenfd)
connect(sockfd)
quic_client_handshake(sockfd)

sockfd = accept(listenfd)

quic_server_handshake(sockfd, cert)
sendmsg(sockfd) recvmsg(sockfd)

close(sockfd) close(sockfd)

close(listenfd)

Sample: https://github.com/Ixin/quic/blob/main/tests/sample_test.c

14

From Kernel

» Client

__sock create(IPPROTO_QUIC, &sock)

kernel_bind(sock)

kernel _connect(sock)

tls_client hello x509(args:{sock})

kernel_sendmsg(sock)

sock release(sock)

» Server

__sock _create(IPPROTO_QUIC, &sock)
kernel_bind(sock)

kernel_listen(sock)

kernel accept(sock, &newsock)

tls_server_hello x509(args:{newsock})

kernel _recvmsg(newsock)
sock_release(newsock)

sock _release(sock)

Sample: https://github.com/Ixin/quic/blob/main/net/quic/sample_test.c

15

Advanced APIs

> Control Message
sendmsg() with cmsg stream info to set stream_id and flag
recvmsg() with cmsg stream info to get stream_id and flag
> Socket Options
SOCKOPT _KEY_UPDATE for rekeying
SOCKOPT_CONNECTION_MIGRATION for connection migration
SOCKOPT_STREAM_OPEN/RESET/STOP_SENDING for stream management
SOCKOPT _SESSION_TICKET for session resumption and 0-RTT Data
> Notification/Events
Connection Update

Stream Update

Man doc: https://github.com/Ixin/quic/wiki/man

Examples: https://github.com/Ixin/quic/tree/main/tests

16

Next Step

» HW crypto offloading

» Internet Draft For QUIC Sockets API Extensions

Recent summary from Xin Long

Kernel QUIC specialities:
Enables use for Kernel Consumers

Common easy to understand Socket APIs, like
listen/accept/connect/send/recv/close.

Avoid Data Copies from Users to Kernel via sendfile() syscall.

Easy to cooperate with offloading in NICs, no configuration needed
from userspace

Less Interoperability Issues to implement QUIC in OS

Recent WIP summary from Xin Long

What's next for their driver (net/quic/quic.ko):

1. Improve the performance and complete the congestion
control code (there's some testing data vs KTLS in github
README)

2. Collaborate with Andy from Broadcom to implement the
Infrastructure for the Offloading inside HW NICs.

3. Work with another colleague to start an RFC doc
standardizing the socket APIs for OS-level QUIC
Implementation.

What about the SMB3.1.1 pieces

 Changes on the SMB3.1.1 client side are small
* New socket type to support (see slide 26)

 ALPN (app layer protocol negotiation for TLS) Identification
sequence used to identify the SMB2 protocol over QUIC is
O0x73 0x6D 0x62 ("smb")

e See section 4.10 of MS-SMB2 and section 2.2.3.1.5
(SMB2_TRANSPORT _ CAPABILITIES negotiate context
which we will have to parse)

Next steps

Continue following up with Dave and the network maintainers
If we have updates on our SMB3.1.1 testing with it

Continue building and testing Xin’s git tree until it is in linux-
next or mainline (when we can move to using that version)

Add SMB3.1.1 code to fs/smb/client/transport.c to read/write
over the new QUIC driver

Add SMB3.1.1 code to process the transport capabilities
SMB3.1.1 negotiate context to fs/smb/client/smb2pdu.c

More Next steps

 What about user space tooling?

— updates to cifs-utils and/or Samba tools could help make this easier for
users

— New mount option for cifs.ko to force use of QUIC if available

* What about certificate setup and exchange?
— Could Samba tooling help?

* Encourage code contributions, review and testing ...
- Would love some help on this exciting feature

Testing Improvements

Test ... test ... test ...

Additional tests are encouraged (quic or smb specific)

= See the tests subdirectory of the quic github tree

* The basic xfstests should be fine for testing SMB3.1.1 over QUIC, but
we will need to come up with some reconnect tests (today mostly in the
buildbot’s “DFS” test group) to exercise reconnect with the new code,
and will need to test various encryption options (QUIC only, SMB3.1.1
only and both QUIC and SMB3.1.1 encryption)

quic function tests

*xk**% [Function Tests (PSK)] ***¥*x

HANDSHAKE DONE

STREAM TEST

testl: (not allowed send(MSG_SYN) to open a stream when last is not closed)

T - test2: (use send(MSG_SYN) to open one stream)
O ru n t e u n Ctl O n a te StS test3: (use send(MSG_SYN) to open next stream after last is closed)

test4: (use send(MSG_SYN) to open next bidi stream after last is closed)

tests: (not allowed to open a stream that is already closed with getsockopt(QUIC_SOCKOPT_STREAM_OPEN))

test6: (use getsockopt{QUIC_SOCKOPT_STREAM OPEN) to open a specific stream)

test7: (use getsockopt(QUIC SOCKOPT STREAM OPEN) to open next bidi stream)

tests: (use getsockopt(QUIC_SOCKOPT_STREAM_OPEN) to open next uni stream)

Cd teStS test9: (not allowed to open a stream that is already closed with sendmsg(QUIC_STREAM_FLAG_NEW))
¢ (not allowed to open a stream twice with sendmsg(QUIC STREAM_FLAG_NEW))

(sendmsg with a specific stream normally)
(not allowed to open a stream with sendmsg(sid == -1) if it the old one is not closed
(open next uni stream with sendmsg(sid == -1))

¢ (open next bidi stream with sendmsg(sid -1))
I I Ia e ru n g (open multiple stream and send on 1st one)
: (open multiple stream and send on 2nd one)

(not allowed to send data on a closed stream)
(sendmsg with sid > max_streams_bidi in blocked mode)
(sendmsg with sid > max streams uni in blocked mode)

e (return -EAGAIN in bidi non-blocked mode)
ru nS u n C IO n a eS S (sendmsg with sid > max_streams_bidi in non-blocked mode)
€ (return -EAGAIN in uni non-blocked mode)
€ (sendmsg with sid > max_streams_uni in non-blocked mode)
(getsockopt(QUIC_SOCKOPT_STREAM_OPEN) with sid > max_streams_bidi in blocked mode)
(getsockopt(QUIC SOCKOPT STREAM OPEN) with sid > max streams uni in blocked mode)

-)
€ (return -EAGAIN in bidi non-blocked mode)
€ B (getsockopt(QUIC_SOCKOPT_STREAM_OPEN) with sid > max_streams_bidi in non-blocked mode)

(return -EAGAIN in uni non-blocked mode)
(sendmsg with sid > max_streams_uni in non-blocked mode)
(not allowed to reset a closed stream)
(not allowed to reset a stream that hasn't opened)
(reset a opened stream)
(not allowed to send data on a reset stream)
(not allowed to send data with FIN on a reset stream)
(not allowed to send data on a reset stream by peer stop_sending)
PASS (not allowed to send data with FIN on a reset stream set by peer stop_sending)
CONNECTION TEST:
test1: (retire source connection id @)
test2: (retire source connection id 1)
test3: (not allow to retire a retired source connection id)
testa: (not allow to retire all source connection id)
tests: (retire multiple source connection id)
testa: (retire max_count - 1 source connection id)
test7: SS (retire dest connection id @)
tests: (retire dest connection id 1)
(not allow to retire a retired dest connection id)
(not allow to retire all dest connection id)
(retire multiple dest connection id)
(retire max_count - 1 dest connection id)
(connection migration is set)
S (send messaae with new address)

Xfstest automation

@) A Mot secure | smb311-linux-testing.southcentralus.cloudapp.azure.com/#/builders/10/builds/52 * [uf] o= %3

CIFS TESTING X CIFS TESTING Builders / ksmbd /' 52 Rebuild Anonymous -

Will also be important ,

) Previous

Grid View

Waterfall View Build steps Build Properties Worker: cifs-testing Responsible Users Changes Debug

to add xfstest scenarios

© SAll ksmbd/52 | fix missing directory on test server (rerunning 6.9-rc4) 1:41:49 build successful | SUCCESS

> Builds worker_preparation 0 s worker cifs-testing ready

(e.g. local.config using

Setting © Shutting down win16-tester 0 s "./shutdown-vm.sh win16-tester'

© Shutting down fedora29-tester 1 s "Jshutdown-vm.sh fedora29-tester'

a mount option that forces
use of QUIC instead of
TCP)

Example here is over TCP
and runs 100s of fs tests

© Shutting down ubuntu-btrfs-tester
© Restoring image for fedora29-tester
© Rebooting fedora29-tester

© Build xfstests on fedora29.vm test

© Copy Files

9 © Build and install new kemnel

10" © Rebooting fedora29-tester_1

© Build cifsutils on fedora29.vm test

© Initialize xfstests on fedora29.vm.test
© Run warmup smb3azure generic/024
© Run xfstest ksmbd cifs/001

© Run xfstest ksmbd cifs/100

0 s "./shutdown-vm.sh ubuntu-btrfs-tester'

0 s ' /restore-image sh fedora29-tester ...

48 s "Jreboot-vm.sh fedora29-tester ..

41 s 'ssh fedora29.vm.test ..

42 5" copy-files.sh'

1:40 "./build-kernel-rpms.sh revision: ...’

49 s "/reboot-vm sh fedora29-tester ...

52 s 'ssh fedora29 vm test

26 5 'ssh fedora29.vm.test ...

14 s 'ssh fedora29.vm.test ...

5 5 'ssh fedora29.vm.test ...

4 5 'ssh fedora29.vm.test ...

Thank you for your time

* Future is very bright!

Linux

Additional Resources to Explore

https://github.com/Ixin/quic

And an alternative open source implementation in userspace:
https://github.com/microsoft/msquic

https://techcomrhunity.microsoft.com/t5/storage-at-microsoft/smb-over-quic-is-ga-and-we-have-lots-of-news/ba-

2928695
and there is also a newer post on SMB3.1.1 and QUIC by Ned

https://www.snhia.org/sites/default/files/SDCEMEA/2021/snia-SMB-over-QUIC.pdf
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-over-quic

Two research papers with interesting observations about areas where Linux QUIC drivers can improve perf:
https://publikationen.bibliothek.kit.edu/1000161904/152028985

https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/jaeger2023quic.pdf

https://techcommunity.microsoft.com/t5/storage-at-microsoft/smb-over-quic-is-ga-and-we-have-lots-of-news/ba-p/2928695
https://techcommunity.microsoft.com/t5/storage-at-microsoft/smb-over-quic-is-ga-and-we-have-lots-of-news/ba-p/2928695
https://github.com/lxin/quic

	Advancing access to Remote Files: Exploring Recent Enhancements
	Slide 2
	Who am ?
	Outline
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Testing Improvements
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

