
Presented by Steve French

Principal Software Engineer

Microsoft Azure Storage

Improving the network stack: progress on 
QUIC and SMB3.1.1 for Linux

SambaXP 2024



 This work represents the views of the author(s) and does not 
necessarily reflect the views of Microsoft Corporation

 Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be trademarks or 

service marks of others.



Who am I?

Steve French smfrench@gmail.com
Author and maintainer of Linux cifs vfs (for accessing Samba, Azure, 

Windows and various SMB3/CIFS based NAS appliances)
  Co-maintainer of the kernel server (ksmbd)
  Member of the Samba team (co-creator of the “net” utility)
  coauthor of SNIA CIFS Technical Reference, former SNIA CIFS 

Working Group chair
Principal Software Engineer, Azure Storage: Microsoft



Outline

Overview of QUIC
Review of Xin Long’s status update on QUIC in Linux kernel
Discussion of cifs.ko changes needed

Coming soon … what to look forward to

 Testing discussion



Why is QUIC important?
We could ask ChatGPT ...



Why QUIC (continued) ...



But it misses some of the obvious ...
● It solves the “port 445” problem (e.g. it can be hard form me to demo 

SMB3.1.1 when Spectrum blocks port 445). SMB3.1.1 mounts to anywhere … 
save your files more easily into the cloud ...

● It also could allow a mix of machine credentials (for QUIC encryption) and 
user credentials ... which may be helpful for some workloads

● If QUIC is also supported in unencrypted mode (as some QUIC drivers allow 
for testing) it will likely be faster than TCP (if encrypting it is still a good 
alternative to requiring SMB3.1.1 GCM encryption)

● Will there be cases where “double encrypting” (at QUIC layer and also for 
SMB3.1.1 layer) will be valuable?



But it still would be awesome due to ...

● No “head of line blocking”
● Better congestion control
● Faster session establishment
● Reduced retransmissions (and Forward Error Correction)
● Large percentage of internet traffic is already over QUIC 

(and growing)



So why don’t we have QUIC yet on Linux?
● Well … we do in userspace, multiple drivers

– e.g. https://github.com/microsoft/msquic is well tested and works on 
Linux

● But unlike Windows, we don’t have a kernel driver
● And many of the open source QUIC drivers wouldn’t port well 

to Linux kernel (even if only porting minimal required function) 
and don’t follow kernel coding style

● Last year (June 24th) – Xin Long started a kernel project which 
is looking VERY promising

https://github.com/microsoft/msquic


Is this just for Windows?

● Ned’s slides and learn.microsoft.com explain more about 
Windows SMB3.1.1 over QUIC, but Visuality systems also 
supports SMB3.1.1 over QUIC

● QUIC will be a great addition to cifs.ko, ksmbd.ko and 
Samba server and tools



Windows QUIC SMB3.1.1 config



Example Windows mount from Ned’s post



Diagram showing SMB3.1.1 over QUIC 
(for Windows)

● (Thanks to Obaid)



The New Kernel QUIC driver



New Kernel QUIC driver

● What I am impressed with so far:
– Kernel style and code looks good
– Very easy to build the kernel driver and run their functional tests
– Reasonable size (20.4KLOC about ½ of which is kernel code)
– Good set of functional tests included (it passed all of them when 

I tried)
– Maintainers have been responsive to emails and questions



New Kernel QUIC driver

● Easy to build and install (see quic/README.md)
–



Overview of the proposed kernel QUIC 
driver

Next 15 slides courtesy of Xin Long <lucien.xin@gmail.com>
See https://github.com/lxin/quic

Thanks to Xin and also for contributors to the code e.g.
Pengtao He <hepengtao@xiomi.com> and

Tyler Fanelli <tfanelli@redhat.com> 

mailto:lucien.xin@gmail.com
https://github.com/lxin/quic
mailto:hepengtao@xiomi.com
mailto:tfanelli@redhat.com


Devconf Talk

What we’ll 

discuss today

▸ Background

▸ Implementation

▸ Usage

▸ Next Step

2



Devconf Talk

▸ What is QUIC

▸ Why QUIC in Kernel is Needed

▸ In Kernel QUIC Evolution

3

Background



Devconf Talk

What is QUIC

RFC9000 - A UDP-Based Multiplexed and Secure Transport

▸ UDP based

･ Connection Migration

▸ Multistreaming

▸ Secured by TLS 1.3

･ Rekeying/Session Resumption/0-RTT

▸ Transport Protocol

･ Flow Control/Congestion Control

4

▸ RFC8999 - Version Negotiation

▸ RFC9001 - Using TLS to Secure

▸ RFC9002- Congestion Control

▸ RFC9221 - Unreliable Datagram

▸ RFC9287 - Greasing the QUIC Bit

▸ RFC9368 - Version Negotiation 2

▸ RFC9369 - QUIC Version 2

Other RFCs:



Devconf Talk

Why QUIC in Kernel is Needed

▸ Kernel Consumers

･ SMB, NFS ...

▸ Socket APIs

･ listen/accept/connect/send/recv/close/get/setsockopt ...

▸ Avoiding Data Copies

･ zero-copy via sendfile()

▸ Offloading in NICs

･ Similar to TLS/IPsec offloading

▸  Less Interoperability Issues

･ Too many Userland QUIC implementations

5



Devconf Talk

In Kernel QUIC Evolution

▸ net: support QUIC crypto (a patchset posted on 2022)

▸ Offloading Encryption to QUIC Enabled NICs (LPC2023)

▸ TLS 1.3 Handshake in kernel/lib

▸ TLS Handshake netlink in kernel/net (upstream kernel)

▸ Long/Handshake Packets processed by libngtcp2

6

In-Kernel QUIC  !=  Crypto Offloading for Userland QUIC



Devconf Talk

▸ Idea

▸ Handshake Architecture

▸ User Data  Architecture

▸ Socket Process

7

Implementation



Devconf Talk

Idea

In-kernel QUIC with Userspace Handshake

▸ Userspace: Only raw TLS Handshake Messages creating and processing

▸ Kernel: Create IPPROTO_QUIC type socket running over UDP tunnels

▸ No protocol number needed from IANA, like IPPROTO_MPTCP

▸ Reasons why ULP layer is not used:

･     Connection Migration

･     Common Socket APIs

･     Transport Protocol

▸ Kernel consumers use handshake netlink to request a handshake

8



Devconf Talk

Handshake Architecture

9

socket (IPPROTO_QUIC) | Protocol

stream |connection_id |cong |path |timer

  packet  |  frame  |  crypto  |  pnamp

        input       |      output

                 UDP tunnels

APP1 APP2

SMB NFS

send/recvmsg()

CMSG  handshake_info

set/getsockopt()

SOCKOPT_CRYPTO_SECRET/

TRANSPORT_PARAM_EXT

Handshake 

Netlink APIs

ktls-utils: libquic: 

quic_handshake_server/client/param()

ktls-utils: tlshd

Userspace

Kernel

…

…



Devconf Talk

User Data  Architecture

10

socket (IPPROTO_QUIC) | Protocol

stream |connection_id |cong |path |timer

  packet  |  frame  |  crypto  |  pnamp

        input       |      output

                 UDP tunnels

APP1 APP2

SMB NFS

send/recvmsg()

CMSG  stream_info

set/getsockopt()

SOCKOPT_KEY_UPDATE/

CONNECTION_MIGRATION/

STREAM_OPEN/RESET/STOP …

send/recvmsg()

set/getsockopt()

Userspace

Kernel

…

…



Devconf Talk

Socket Process

11

Initial

Initial Handshake

Handshake

User Data

User Data

sk

listen sk

reqsk

sk

sk sk

Client: Server:

SK

Hashtable

Conn ID

Hashtable

SK

Hashtable

Conn ID

Hashtable

= accept()



Devconf Talk

▸ From Userspace

▸ From Kernel

▸ Advanced APIs

12

Usage



Devconf Talk

From Userspace

13

sockfd = socket(IPPROTO_QUIC)

bind(sockfd)

connect(sockfd)

quic_client_handshake(sockfd)

sendmsg(sockfd)

close(sockfd)

listenfd = socket(IPPROTO_QUIC)

bind(listenfd)

listen(listenfd)

sockfd = accept(listenfd)

quic_server_handshake(sockfd, cert)

recvmsg(sockfd)

close(sockfd)

close(listenfd)

▸ Client ▸ Server

Sample: https://github.com/lxin/quic/blob/main/tests/sample_test.c



Devconf Talk

From Kernel

14

__sock_create(IPPROTO_QUIC, &sock)

kernel_bind(sock)

kernel_connect(sock)

tls_client_hello_x509(args:{sock})

kernel_sendmsg(sock)

sock_release(sock)

__sock_create(IPPROTO_QUIC, &sock)

kernel_bind(sock)

kernel_listen(sock)

kernel_accept(sock, &newsock)

tls_server_hello_x509(args:{newsock})

kernel_recvmsg(newsock)

sock_release(newsock)

sock_release(sock)

▸ Client ▸ Server

Sample: https://github.com/lxin/quic/blob/main/net/quic/sample_test.c



Devconf Talk

Advanced APIs

▸ Control Message

･   sendmsg() with cmsg stream info to set stream_id and flag

･   recvmsg() with cmsg stream info to get stream_id and flag

▸ Socket Options

･   SOCKOPT_KEY_UPDATE for rekeying

･   SOCKOPT_CONNECTION_MIGRATION for connection migration

･   SOCKOPT_STREAM_OPEN/RESET/STOP_SENDING for stream management

･   SOCKOPT_SESSION_TICKET for session resumption and 0-RTT Data

▸ Notification/Events

･   Connection Update

･   Stream Update

Man doc: https://github.com/lxin/quic/wiki/man

Examples: https://github.com/lxin/quic/tree/main/tests
15



Devconf Talk

▸ HW crypto offloading

▸ Internet Draft For QUIC Sockets API Extensions

16

Next Step



Recent summary from Xin Long

 Kernel QUIC specialities:

● Enables use for Kernel Consumers

● Common easy to understand Socket APIs, like 
listen/accept/connect/send/recv/close.

● Avoid Data Copies from Users to Kernel via sendfile() syscall.

● Easy to cooperate with offloading in NICs, no configuration needed 
from userspace

● Less Interoperability Issues to implement QUIC in OS



Recent WIP summary from Xin Long

 What’s next for their driver (net/quic/quic.ko):

1. Improve the performance and complete the congestion 
control code (there's some testing data vs kTLS in github 
README)

2. Collaborate with Andy from Broadcom to implement the 
infrastructure for the Offloading inside HW NICs.

3. Work with another colleague to start an RFC doc 
standardizing the socket APIs for OS-level QUIC 
implementation.



What about the SMB3.1.1 pieces

● Changes on the SMB3.1.1 client side are small
● New socket type to support (see slide 26)
● ALPN (app layer protocol negotiation for TLS) Identification 

sequence used to identify the SMB2 protocol over QUIC is 
0x73 0x6D 0x62 ("smb")

● See section 4.10 of MS-SMB2 and section 2.2.3.1.5 
(SMB2_TRANSPORT_CAPABILITIES negotiate context 
which we will have to parse)



Next steps

● Continue following up with Dave and the network maintainers 
if we have updates on our SMB3.1.1 testing with it

● Continue building and testing Xin’s git tree until it is in linux-
next or mainline (when we can move to using that version)

● Add SMB3.1.1 code to fs/smb/client/transport.c to read/write 
over the new QUIC driver

● Add SMB3.1.1 code to process the transport capabilities 
SMB3.1.1 negotiate context to fs/smb/client/smb2pdu.c



More Next steps

● What about user space tooling?
– updates to cifs-utils and/or Samba tools could help make this easier for 

users

– New mount option for cifs.ko to force use of QUIC if available

● What about certificate setup and exchange?
– Could Samba tooling help?

● Encourage code contributions, review and testing …
– Would love some help on this exciting feature



Testing Improvements
Test … test … test ...



Additional tests are encouraged (quic or smb specific)

See the tests subdirectory of the quic github tree

 The basic xfstests should be fine for testing SMB3.1.1 over QUIC, but 
we will need to come up with some reconnect tests (today mostly in the 
buildbot’s “DFS” test group) to exercise reconnect with the new code, 
and will need to test various encryption options (QUIC only, SMB3.1.1 
only and both QUIC and SMB3.1.1 encryption)



quic function tests

● To run the functional tests

cd tests
– make run
– (runs 192 functional tests 
– then does various perf tests)



Xfstest automation

● Will also be important

to add xfstest scenarios

(e.g. local.config using

a mount option that forces

use of QUIC instead of

TCP)

Example here is over TCP

and runs 100s of fs tests



Thank you for your time

 Future is very bright!

S
M
B
3

+



Additional Resources to Explore



https://www.snia.org/sites/default/files/SDCEMEA/2021/snia-SMB-over-QUIC.pdf

https://techcommunity.microsoft.com/t5/storage-at-microsoft/smb-over-quic-is-ga-and-we-have-lots-of-news/ba-p/
2928695
 and there is also a newer post on SMB3.1.1 and QUIC by Ned

https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-over-quic

 https://github.com/lxin/quic

 And an alternative open source implementation in userspace:  
    https://github.com/microsoft/msquic

https://publikationen.bibliothek.kit.edu/1000161904/152028985

https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/jaeger2023quic.pdf

Two research papers with interesting observations about areas where Linux QUIC drivers can improve perf:

https://techcommunity.microsoft.com/t5/storage-at-microsoft/smb-over-quic-is-ga-and-we-have-lots-of-news/ba-p/2928695
https://techcommunity.microsoft.com/t5/storage-at-microsoft/smb-over-quic-is-ga-and-we-have-lots-of-news/ba-p/2928695
https://github.com/lxin/quic

	Advancing access to Remote Files: Exploring Recent Enhancements
	Slide 2
	Who am ?
	Outline
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Testing Improvements
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

